Lysosomal membrane dynamics: structure and interorganellar movement of a major lysosomal membrane glycoprotein
نویسندگان
چکیده
The biochemistry and intracellular transit of an integral membrane glycoprotein of chicken fibroblast lysosomes were studied with monoclonal antibody techniques. The glycoprotein had an apparent molecular weight of 95,000-105,000. Structural analysis involving metabolic labeling with [35S]methionine and cleavage with glycosidases revealed the presence of numerous oligosaccharide chains N-linked to a core polypeptide of apparent molecular weight 48,000. A primary localization of the glycoprotein to lysosomes was demonstrated by the coincidence of antibody binding sites with regions of acridine orange uptake, electron immunocytochemical labeling on the inner surface of lysosome-like vacuolar membranes, and preferential association of the glycoprotein with lysosome-enriched subcellular fractions from Percoll gradients. In addition, small quantities of the glycoprotein were detected on endocytic vesicle and plasma membranes. To study the intracellular pathway of the glycoprotein, we used a monoclonal antibody whose binding to the glycoprotein at the cell surface had no effect on the number or subcellular distribution of antigen molecules. Incubation of chicken fibroblasts with monoclonal antibody at 37 degrees C led to the rapid uptake and subsequent delivery of antibody to lysosomes, where antibody was degraded. This process continued undiminished for many hours on cells continuously exposed to the antibody and was not blocked by the addition of cycloheximide. The rate at which antigen sites were replenished in the plasma membrane of cells prelabeled with antibody (t1/2 = 2 min) was essentially equivalent to the rate of internalization of antibody bound to cell surfaces. These results suggest that there is a continuous and rapid exchange of this glycoprotein between plasma membrane and the membranes of endosomes and/or lysosomes.
منابع مشابه
Involvement of Four Different Intracellular Sites in Chloroacetaldehyde- Induced Oxidative Stress Cytotoxicity
Chloroacetaldehyde (CAA) is a chlorination by-product in finished drinking water and a toxic metabolite of a wide variety of industrial chemicals (e.g. vinyl chloride) and chemotherapeutic agents (e.g. cyclophosphamide and ifosfamide). In this research, the cytotoxic mechanisms of CAA in freshly isolated rat hepatocytes were investigated.CAA cytotoxicity was associated with reactive oxygen spec...
متن کاملLysosomal Oxidative Stress Cytotoxicity Induced By Para-phenylenediamine Redox Cycling In Hepatocytes
It has already been reported that muscle necrosis induced by various phenylenediamine derivatives are correlated with their autoxidation rate. Now in a more detailed investigation of the cytotoxic mechanism using a model system of isolated hepatocytes and ring-methylated structural isomer durenediamine (DD) we have shown that under aerobic conditions, phenylenediamine induced cytotoxicity and R...
متن کاملLysosomal Oxidative Stress Cytotoxicity Induced By Para-phenylenediamine Redox Cycling In Hepatocytes
It has already been reported that muscle necrosis induced by various phenylenediamine derivatives are correlated with their autoxidation rate. Now in a more detailed investigation of the cytotoxic mechanism using a model system of isolated hepatocytes and ring-methylated structural isomer durenediamine (DD) we have shown that under aerobic conditions, phenylenediamine induced cytotoxicity and R...
متن کاملPerfluorooctanesulfonate (PFOS) Induces Apoptosis Signaling and Proteolysis in Human Lymphocytes through ROS Mediated Mitochondrial Dysfunction and Lysosomal Membrane Labialization
Perfluorinated compounds (PFCs) such as perfluorooctanesulfonate (PFOS) are stable chemicals that accumulate in biological matrix. Toxicity of these compounds including immunotoxicity has been demonstrated in experimental models and wildlife. Although limited number of studies examined the effects of PFOS on human lymphocytes but so far no research has investigated the complete mechanisms of PF...
متن کاملInvolvement of Four Different Intracellular Sites in Chloroacetaldehyde- Induced Oxidative Stress Cytotoxicity
Chloroacetaldehyde (CAA) is a chlorination by-product in finished drinking water and a toxic metabolite of a wide variety of industrial chemicals (e.g. vinyl chloride) and chemotherapeutic agents (e.g. cyclophosphamide and ifosfamide). In this research, the cytotoxic mechanisms of CAA in freshly isolated rat hepatocytes were investigated.CAA cytotoxicity was associated with reactive oxygen spec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of Cell Biology
دوره 102 شماره
صفحات -
تاریخ انتشار 1986